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Quantum communication relies on the efficient generation of entanglement

between remote quantum nodes, due to entanglement’s key role in achieving

and verifying secure communications. Remote entanglement has been real-

ized using a number of different probabilistic schemes, but deterministic re-

mote entanglement has only recently been demonstrated, using a variety of

superconducting circuit approaches. However, the deterministic violation of a

Bell inequality, a strong measure of quantum correlation, has not to date been

demonstrated in a superconducting quantum communication architecture, in

part because achieving sufficiently strong correlation requires fast and accu-

rate control of the emission and capture of the entangling photons. Here we

present a simple and scalable architecture for achieving this benchmark result

in a superconducting system.
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Superconducting quantum circuits have made significant progress over the past few years,

demonstrating improved qubit lifetimes, higher gate fidelities, and increasing circuit complex-

ity (1,2). Superconducting qubits also offer highly flexible quantum control over other systems,

including electromagnetic (3,4) and mechanical resonators (5,6). These devices are thus appeal-

ing for testing quantum communication protocols, with recent demonstrations of deterministic

remote state transfer and entanglement generation (7–9). The Bell inequality (10) is an im-

portant benchmark for entanglement, providing a straightforward test of whether a local and

deterministic theory can explain measured correlations. To date, however, only local violations

of the Bell or Leggett-Garg (11) inequalities have been demonstrated using superconducting

qubits (12, 13), as remote state transfer and entanglement generation with sufficiently high fi-

delity is still an experimental challenge.

Here we present two distinct methods that violate the Clauser-Horne-Shimony-Holt (CHSH)

(14) form of the Bell inequality, using a pair of superconducting qubits coupled through a 78

cm-long transmission line, with the photon emission and capture rates controlled by a pair

of electrically-tunable couplers (15). In one experiment, we use a single standing mode of

the transmission line to relay quantum states between the qubits, achieving a transfer fidelity

of 0.952 ± 0.009. This enables the deterministic generation of a Bell state with a fidelity of

0.957 ± 0.005. Measurements on this remotely-entangled Bell state achieve a CHSH correla-

tion S = 2.237 ± 0.036, exceeding the classical correlation limit of |S| ≤ 2 by 6.6 standard

deviations. In the second experiment, we control the time-dependent emission and capture rates

of itinerant photons through the transmission line, a method independent of transmission dis-

tance. These shaped photons enable quantum state transfer with a fidelity of 0.940 ± 0.008,

and deterministic generation of a Bell state with a fidelity of 0.936 ± 0.006. Measurements

on this Bell state demonstrate a CHSH correlation of S = 2.223 ± 0.023, exceeding the clas-

sical limit by 9.7 standard deviations. We note that the Bell state fidelities for both methods
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are close to the threshold fidelity of 0.96 for surface code quantum communication (16). This

simple yet efficient circuit architecture thus provides a powerful tool to explore complex quan-

tum communication protocols and network designs, and can serve as a testbed for distributed

implementations of the surface code.

The device layout is shown in Fig. 1A, comprising two transmon qubits (17, 18), Q1 and

Q2, connected via two tunable couplers (15), G1 and G2, to a coplanar waveguide (CPW)

transmission line of length ` = 0.78 m. The device is fabricated on a single sapphire substrate,

with the serpentine transmission line covering most of the area of a 6× 15 mm2 chip. A circuit

diagram is shown in Fig. 1B, with more details in the Supplementary Information (SI).

Ignoring the couplers, the transmission line is shorted to ground on both sides, supporting a

sequence of standing modes with frequencies equally-spaced by ωFSR/2π = 1/2T` = 79 MHz,

where T` = 6.3 ns is the photon travel time along the line. The coupling strength gi between

qubit Qi and the nth standing mode is determined by the control signals sent to the coupler

Gi, and can be set dynamically between zero and about 45 MHz. The coupling strength is

proportional to
√
n, but for the experiments here n is large (∼ 70) and the variation of n small

(∼ ±5), so this dependence can be safely ignored. More details can be found in the SI.

When one coupler is set to a small non-zero coupling, with |gi| � ωFSR, and the other

coupler is turned off, the coupled qubit can selectively address each standing mode of the trans-

mission line. This is observed by performing qubit spectroscopy, which reveals a sequence of

avoided-level crossings with the standing mode resonances (Fig. 1C). In the time domain, we

observe vacuum Rabi swaps with each mode by first preparing Q1 in its excited state |e〉 using

a π pulse, then setting the qubit frequency (Fig. 1D). The weak coupling allows the qubit to

interact with each mode separately, with weak interference fringes visible only near frequencies

halfway between each mode.

By weakly coupling both qubits to a single mode, we can relay qubit states through that
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Figure 1: Device description. A Photograph of device, showing two qubits Q1 and Q2 (blue)
connected via tunable couplers G1 and G2 (green) to a 78 cm-long coplanar transmission line
(cyan). B Circuit schematic, with parameters listed in Table S2. C Spectroscopy of qubit Q1

interacting with six transmission line standing modes. Black dashed lines: Numerical simula-
tions. D Vacuum Rabi swaps between Q1 and the six standing modes. The coupling is set to
g1/2π = 5 MHz� ωFSR/2π.
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mode (Fig. 2A). We prepare Q1 in its excited state |e〉, then turn on the G1 coupling for a

time τ , while simultaneously adjusting Q1’s Z bias to match its frequency to the selected mode,

swapping the excitation to the mode. We then turn on theG2 coupling and adjustQ2’s frequency

to swap the excitation to Q2. At τswap = 52 ns, one photon is completely transferred from Q1 to

Q2, with a transfer probability of 0.936±0.008. We perform quantum process tomography (19)

to characterize this transfer process, yielding the process matrix χ1 shown in Fig. 2B, with a

process fidelityFp1 = Tr(χ1·χideal) = 0.952±0.009. Here χideal = I is the ideal process matrix.

This experimental result agrees well with the numerically-simulated fidelity Fp1 = 0.955. Note

a related experiment (20) has demonstrated quantum state transfer through a 1 m-long normal-

metal coaxial cable using an innovative “dark” relay mode, achieving a transfer fidelity of 61%

with a significantly lossier channel.

We also use the relay mode to generate a Bell state |ψBell〉 = (|ge〉+ |eg〉) /
√

2 between

the two qubits, by terminating the Q1 swap process at the half-swap time τhalf = 26 ns. We

perform quantum state tomography (21), with the reconstructed density matrix ρ1 displayed in

Fig. 2C, from which we calculate a state fidelity F s1 = 〈ψBell|ρ1|ψBell〉 = 0.950 ± 0.005 and a

concurrence C1 = 0.927± 0.013. Numerical simulations using the master equation give a state

fidelity F s1 = 0.947 and a concurrence C1 = 0.914, in good agreement with experiment.

We next perform the CHSH Bell inequality test (12) on this remotely entangled Bell state

(see SI). We measure Q1 along direction a = x or a′ = y, and simultaneously measure Q2

along b or b′⊥b, varying the angle θ between a and b (Fig. 2D inset). We then calculate the

CHSH correlation S, as shown in Fig. 2D. We find that S is maximized at θ = 5.5 rad, where

S = 2.237± 0.036 with no measurement correction, exceeding the maximum classical value of

2 by 6.6 standard deviations. If we correct for readout error (12), we find S = 2.665 ± 0.044,

approaching the quantum limit of 2
√

2 ≈ 2.828. The entanglement is deterministic and the

measurement is single-shot (see SI), so the detection loophole (22) is closed in this experiment.
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Figure 2: State transfer, remote entanglement, and Bell violation using the relay method.
A Quantum state transfer from Q1 to Q2 using the n = 73, ωn/2π = 5.744 GHz standing
mode as a relay, showing the |e〉 state probability Pe for each qubit versus swap time τ . Solid
lines: Numerical simulations. Inset: Control pulse sequence. B Process matrix (absolute values
shown as colored bars) of the state transfer process with a fidelity Fp1 = 0.952±0.009. Dashed-
outline frames: Ideal process matrix. C Bell state density matrix (absolute values shown as
colored bars), with a state fidelity F s1 = 0.950 ± 0.005. Dashed-outline frames: Ideal density
matrix. D Bell test, showing CHSH correlation S versus measurement angle θ. Red dots:
No measurement correction; purple dots: With measurement correction. Solid lines: Numerical
simulations using ρ1 from panel C. The classical and quantum limits are marked with horizontal
dashed lines. Inset: Measurement axes a, a′, b, b′ on Bloch sphere.

The relay method requires gi � ωFSR so that the swap process only involves a single mode.

However, ωFSR scales inversely with transmission distance `, making gi impractically small

as ` increases. An alternative approach, independent of transmission distance, is to use time-

symmetric itinerant photons for state transfer (23, 24). This is experimentally challenging, and

has only recently been demonstrated with superconducting qubits (7–9). In these experiments,

quantum states are transferred through a superconducting coaxial cable interrupted by a circu-

lator. The circulator facilitates the state transfer by eliminating retro-reflections in the channel,
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but also introduces loss, limiting the transfer fidelity to about 80%. Here we demonstrate re-

mote state transfer and entanglement generation using shaped itinerant photons, with sufficient

fidelity to violate the Bell inequality.

In Fig. 3 we show the first part of the itinerant photon method, tuning Q1’s interaction with

the transmission line so that Q1 can play single-photon “ping-pong” with itself. In Fig. 3A

we show the qubit-transmission line spectroscopy, measured at maximum coupling |g1|/2π =

45 MHz, with Q2’s coupling turned off. In this regime, the avoided-level crossing with each

mode (Fig. 1C) disappears, instead multiple modes are coupled with the qubit. In Fig. 3B

we perform quantum time-domain reflectometry, where qubit Q1 is first excited to |e〉, then we

immediately turn the coupling g1 to its maximum while setting the qubit frequency, both for a

duration τg, following which we monitor the qubit response. The qubit excitation is released

into the transmission line in a few nanoseconds, leaving the qubit in its ground state |g〉 until the

photon reflects off the far end of the transmission line and returns to the qubit, re-exciting the

qubit to its |e〉 state. This process does not depend on qubit frequency, other than some small

features. A line cut through the data (Fig. 3C) shows that the emission takes about 8 ns, with

the round trip then completed in 2T` = 12.6 ns. Three full transits are shown, with the peak

amplitude falling, and small ripples appearing, mainly due to scattering from each photon-qubit

interaction. The coupling here is strong enough that the rise and fall time of the control pulse

must be accounted for in the simulations (see SI).

To improve the photon capture efficiency, we dynamically tuneQ1’s coupling (23,24), while

keeping the qubit frequency fixed (see SI). The maximum coupling is strong enough that the

photon emission and re-capture process can be completed within the round-trip travel time 2T`,

avoiding interference from reflections. However, the bandwidth of our control electronics is

insufficient to allow the desired sub-nanosecond tuning of the itinerant photon envelope, so

we instead approximately tune the coupler by convolving a Gaussian and a rectangle pulse;
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Figure 3: Single qubit “ping-pong” with itinerant photons. A Qubit Q1 spectrum when
strongly coupled to the transmission line, showing multiple modes interacting with the qubit.
Dashed lines: Numerical simulations. B Quantum time-domain reflectometry of Q1 with the
transmission line. The coupling is sufficiently strong that the interaction is essentially indepen-
dent of the qubit frequency. C Line cut through data in B, showing ping-pong-like dynamics.
Q1 emits an itinerant photon in about 8 ns, which is reflected from the far end of the transmis-
sion line and caught by Q1 a time 2T` = 12.6 ns later, the process here repeated three times.
Solid line: Numerical simulations. Inset: Control pulse sequence, with the rise and fall times
indicated. D Optimizing photon catch by adjusting control pulse envelope. Maximum catch
probability is improved from ∼ 0.8 in panel C to 0.922 ± 0.004 by adjusting the control pulse
slope. Solid line: Numerical simulations. Top: Control pulse sequence, showing the pulse
shaping. The qubit bias pulses cancel the coupler-generated frequency shift (see SI).

the width of the Gaussian shapes the edges of the convolved pulse (see SI). We find that this

sub-optimal shaping still achieves a self-capture probability of 0.922± 0.004 (Fig. 3D).

We perform this tune-up for each qubit separately, then combine these processes to perform

qubit-to-qubit state transfer using itinerant photons (Fig. 4A). We first excite Q1 to |e〉, with Q2

in |g〉, then turn on the tuned g1 and g2 time-dependent couplings simultaneously for a duration

t. The itinerant photon is released from Q1 into the channel in about 10 ns, and begins to

interact with Q2 after T` = 6.3 ns. The photon is captured by Q2, with a maximum probability
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of 0.919 ± 0.004 at t = 12.2 ns. We carry out quantum process tomography for this sequence,

and reconstruct the process matrix χ2 (see Fig. 4B), with a fidelity Fp2 = Tr(χ2 · χideal) =

0.940±0.008. Finally, we use half an itinerant photon to generate entanglement between the two

qubits: We first prepare Q1 in |e〉, then control Q1’s coupling to release half its excitation to the

channel, which is captured by Q2 using the same time-domain coupling as in the state transfer

experiment. This generates a Bell state between the two qubits (Fig. 4C), with a reconstructed

Bell state fidelity F s2 = 〈ψBell|ρ2|ψBell〉 = 0.936±0.006 and a concurrence C2 = 0.914±0.014.

As with the relay mode method, we carry out a CHSH Bell inequality test with no detection

loophole (22). We find that S is maximized at θ = 0.84 rad, where S = 2.223± 0.023 without

applying a measurement correction, exceeding the classical limit of 2 by 9.7 standard deviations.

If we correct for readout error, we find S = 2.629± 0.028, close to the quantum limit of 2
√

2.

Note that this method is independent of transmission distance `, so that it should be possible to

also close the locality loophole (25) by extending the transmission distance.

In conclusion, we present a simple architecture that allows efficient quantum state trans-

fer and remote entanglement between two superconducting qubits, connected by a 78 cm-long

transmission line. The fidelities are sufficient to violate the Bell inequality using two differ-

ent methods. This architecture can be extended to arbitrary distances (limited by the cryo-

stat), expanded to multiple communication channels to explore and test more complex quantum

communication protocols, and can serve as a backbone for fault-tolerant distributed quantum

computing.
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Supplementary Information for

“Violating Bell’s inequality with remotely-connected superconducting

qubits”

1 Comparison with similar experiments

There have been a number of recent experiments demonstrating deterministic remote state trans-

fer and entanglement generation with superconducting qubits. In Table S1 we tabulate the main

results of these experiments and compare with the results reported here.

Source Transfer Process State Concurrence CHSH
efficiency fidelity Fp fidelity F s C correlation S

This paper 0.936 0.952 0.950 0.927 2.237
(relay mode)
This paper 0.919 0.940 0.936 0.914 2.223
(itinerant photon)
Kurpiers et al. (7) 0.676 0.8002 0.789 0.747 N/A
Axline et al. (8) 0.74 0.76 0.61 0.51 N/A
Campagne-Ibarcq et al. (9) 0.7 N/A 0.73 N/A N/A
Leung et al. (20) N/A 0.61 0.793 N/A N/A

Table S1: Comparison of similar deterministic remote state transfer and entanglement genera-
tion experiments on superconducting circuits. Here Fp is the state transfer process fidelity, F s
the Bell state fidelity, C the Bell state concurrence, and S the CHSH correlation.

2 Device fabrication

Most of the fabrication is done on 100 mm-diameter sapphire substrates, with steps 5-7 typically

completed on quarters cut from the larger wafer. This recipe is adapted in part from refs. (26,27).

1. 100 nm Al base layer deposition using electron beam evaporation.

2. Base layer lithography and dry etch with BCl3/Cl2/Ar inductively coupled plasma. This

1



defines the qubit capacitors, the tunable coupler wiring, the 78 cm-long transmission line,

and the readout and control circuitry.

3. 1 µm crossover scaffold SiO2 deposition using electron beam evaporation and liftoff,

using an optically-patterned PMMA/nLOF2020 bilayer. The thin PMMA layer serves as

a protection layer for the base Al layer from step 1 during the development of nLOF2020

in AZ300 MIF. The PMMA is then removed with a downstream O2 plasma ash after

development.

4. 500 nm crossover Al deposition with the same liftoff patterning method as step 3. The Al

deposition is preceded by an in situ Ar-ion mill without breaking vacuum between these

two steps.

5. Josephson junction deposition using the Dolan bridge method (28) shadow evaporation

and liftoff, using a PMMA/MAA bilayer and electron beam lithography. The Al evap-

orated in this step does not contact the base wiring and is not preceded by an Ar ion

mill.

6. Bandage Al liftoff deposition (29), preceded by an in situ Ar ion mill. This step estab-

lishes galvanic connections between the base wiring Al from step 1 and the Josephson

junctions defined in step 5.

7. Vapor HF to remove the SiO2 scaffold underlying the Al crossovers.

We use electron beam evaporation to deposit each film. We use photolithography with

0.9 µm I-line photoresist (AZ MiR 703) for steps 2 and 6. Each liftoff step is in N-methyl-2-

pyrrolidone at 80◦C.
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3 Experimental setup

Figure S1 shows the overall control and readout electronics layout. We use custom digital-to-

analog converter (DAC) and analog-to-digital converter (ADC) circuit boards for qubit control

and measurement, respectively. The control boards have dual-channel 14-bit vertical resolution

DAC integrated circuits operating at 1 Gs/s, and the measurement boards have dual-channel

8-bit vertical resolution ADC integrated circuits operating at 1 Gs/s. Each control signal out-

put and measurement signal input channel is filtered by a custom Gaussian low-pass filter with

250 MHz bandwidth. The control boards are used to generate nanosecond-length pulses for

fast qubit Z or coupler G control, or to provide the modulation envelope for several-GHz car-

rier signals, the two combined using an IQ mixer. In this application the signals are used to

implement qubit XY rotations, or to drive the readout resonator feed-line for qubit state mea-

surements. In the latter case, the output signal from the readout feed-line is first amplified by

a traveling wave parametric amplifier (30) (TWPA) at the mixing chamber stage with close to

quantum-limited added noise, then amplified by a cryogenic high electron mobility transistor

(Low Noise Factory HEMT) at the 4 K stage, and further amplified by two room-temperature

Miteq HEMT amplifiers, before down-conversion with an IQ mixer and capture by the mea-

surement ADC board. Two cryogenic circulators with low insertion loss are added between the

TWPA and the cryogenic HEMT to block reflections as well as noise emitted from the input of

the cryogenic HEMT. An additional circulator is inserted between the TWPA drive line and the

qubit, to avoid any unexpected excitation of the qubits from the TWPA drive signal. The mea-

surement board has an on-board demodulation function which allows for fast demodulation of

the captured waveform. Each control line is heavily attenuated and filtered at each temperature

stage in the dilution refrigerator to minimize the impact on the qubit coherence while retaining

controllability.
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Figure S1: Electronics and wiring. Red lines correspond to radiofrequency (RF) and mi-
crowave signals for qubit XY control and measurement, blue lines correspond to intermediate
frequency (IF) signals for fast qubit Z or coupler control, and green lines correspond to quasi-
DC signals for steady qubit Z or coupler bias offset. The IF and DC signals for each bias
channel are combined using a custom-made cryogenic bias tee mounted at the mixing chamber
stage.

4 Device Characterization

Each qubit can be tuned from 3 to 7.3 GHz using its Z-control current bias, with full quan-

tum state control using the XY -control microwave drive line, and dispersive readout with a

capacitively-coupled readout resonator (17).
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4.1 Summary of device parameters

In Table S2 we display the characteristics for each qubit Q1 and Q2. Parameters preceded by ∗

are design values; others are experimental values.

Parameters Q1 Q2
∗Qubit capacitance, Cq 90 fF 90 fF
Qubit junction inductance, LJ 8.34 nH 8.57 nH
∗Coupler inductance to ground, Lg 0.2 nH 0.2 nH
∗Coupler stray wiring inductance, Lw 0.1 nH 0.1 nH
Coupler junction inductance, LT 0.57 nH 0.57 nH
Qubit operating frequency, ωq/2π 5.809 GHz 5.731 GHz
Qubit anharmonicity, α -160 MHz -162 MHz
Qubit lifetime, T1 16 µs 11 µs
Qubit Ramsey dephasing time, T2 0.89 µs 0.85 µs
Readout resonator frequency, ωr/2π 6.4527 GHz 6.3390 GHz
∗Readout coupling, gr/2π 38 MHz 38 MHz
Readout dispersive shift, κr 0.6 MHz 0.8 MHz
|g〉 state readout fidelity, Fg 0.984 0.984
|e〉 state readout fidelity, Fe 0.950 0.942
∗ These are design parameters.

Table S2: Device parameters.

4.2 Qubit single-shot readout

We characterize the qubit readout fidelity by turning the coupler for each qubit as close to zero

as possible, to isolate the qubit from the rest of the circuit. With the qubit in its equilibrium state

(mostly in its ground state |g〉), we then perform a standard single-shot readout measurement,

and record the values of the microwave quadratures I andQ corresponding to the readout result.

We accumulate a large number of these events, shown in blue in Fig. S2. We then repeat this

process, but precede the measurement with an on-resonant microwave pulse calibrated to put the

qubit in its excited state |e〉. The results of these measurements are shown in orange in Fig. S2.

These calibrations allow us to assign any single-shot measurement, based on its de-convolved
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I and Q values, to the |g〉 or |e〉 state based on which side of the dashed line in Fig. S2 the

measurement falls. For Q1, the |g〉 state readout fidelity is Fg = 0.984, and the |e〉 state readout

fidelity is Fe = 0.950. For Q2, the |g〉 state readout fidelity is Fg = 0.984, and the |e〉 state

readout fidelity is Fe = 0.942.
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Figure S2: Qubit single-shot readout. A large number of measurements were made with each
qubit in either its ground |g〉 or its excited |e〉 state, and data accumulated as the blue or orange
points respectively. This calibration allows us to assign any given measurement to the ground
or excited state, as separated by the dashed lines in the IQ plane. For Q1, the |g〉 state readout
fidelity is Fg = 0.984, and the |e〉 state readout fidelity is Fe = 0.950. For Q2, the |g〉 state
readout fidelity is Fg = 0.984, and the |e〉 state readout fidelity is Fe = 0.942.

4.3 Multimode coupling

The 78 cm-long coplanar waveguide transmission line used in this experiment has a 4 µm-

wide center trace and a 2 µm gap to the ground plane on each side, with specific capacitance

C = 173 pF/m and specific inductance L = 402 nH/m. Neglecting the coupler, the line is

shorted byLg at its far end, where this inductance is provided by a short segment of transmission

line. We absorb this length in the overall transmission line, so that the input impedance is given

by

Zin = Z0 tanh(α + iβ)` = Z0
tanhα`+ i tan β`

1 + i tan(β`) tanh(α`)
, (S1)

6



where α + iβ is the complex propagation parameter, and Z0 =
√

L /C is the characteristic

impedance of the transmission line (31).
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Figure S3: Transmission line characterization. A Optical micrograph of a small portion of
the transmission line, which has a 4 µm wide center trace and a 2 µm gap to the ground plane
on either side. The transmission line meanders are separated by 60 µm, and the line has 390
air-bridge crossovers evenly distributed along the line every 2 mm, suppressing unwanted slot-
line modes and other microwave resonances. Inset: Scanning electron micrograph picture of an
air-bridge crossover. B, C The lifetime T1n and Ramsey dephasing time T2n of three of the six
resonant modes shown in Fig. 1D. We find T2n ≈ 2T1n, indicating negligible dephasing noise
in the transmission line. Solid lines: Fits to each mode’s data. Top: Control pulse sequence.
D Quality factor Qn = ωnT1n measured for different modes from 3.6 GHz to 7.2 GHz. We
find that the quality factor is more or less constant over this frequency range, consistent with
Eq. (S8), with an average 〈Q〉 ∼ 1.4× 105 as indicated by the horizontal dashed line.

Near the nth mode resonance,

β` = nπ +
π∆ω

ωλ/2
, (S2)

where ωλ/2 is the half-wave radial frequency. Near this frequency we have the input impedance

Zin ≈ Z0

(
α`+ i

π∆ω

ωλ/2

)
, (S3)
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where we assume α`� 1, a safe assumption for a superconducting transmission line on a very

low-loss substrate such as sapphire.

This impedance is equivalent to a series RLC resonant circuit with equivalent lumped-

element parameters

ωn = nωλ/2, (S4)

Rn = Z0α`, (S5)

Ln =
πZ0

2ωλ/2
=

1

2
L`, (S6)

Cn =
1

n2ω2
λ/2L

=
2C`
n2π2

, (S7)

Qn =
ωnLn
Rn

=
β

2α
. (S8)

In Fig. S3, we display the transmission line and its characterization. Figure S3A shows

an optical micrograph of a small portion of the transmission line and a scanning electron mi-

crograph picture of one of the 390 air-bridge crossovers evenly distributed along the line. In

Fig. S3B and C,we use Q1, weakly coupled to the line, to measure the lifetime T1n and the

Ramsey dephasing time T2n of three resonator modes, with T2n ≈ 2T1n indicating that dephas-

ing noise is negligible in the channel. In Fig. S3D, we show the quality factor Qn = ωnT1n for

different modes ranging from 3.6 GHz to 7.2 GHz. We find that Qn is more or less constant

over this span of frequencies, consistent with Eq. (S8), with an average 〈Q〉 ∼ 1.4× 105. Sim-

ilar quality factors can be achieved with superconducting coaxial cables (32), so in principle

the transmission line here can be replaced by a superconducting cable for inter-chip quantum

communication. Note that for planar transmission lines that include crossovers where an SiO2

dielectric is left as a support structure, measurements find quality factors roughly one order of

magnitude smaller than here (27). Removing the SiO2 crossover scaffold, as was done here, is

therefore an important step for reducing transmission line loss.

8



The effective mutual inductance between the qubit and the transmission line is given by (15)

M =
L2
g

2Lg + Lw + LT/ cos δ
. (S9)

Note we have added the Lw term as compared to ref. (15), which in our circuit has a value

Lw ≈ 0.1 nH and cannot be ignored when LT becomes very small. In the harmonic limit and

assuming weak coupling, the coupling between the qubit Qi and the nth mode is

gi,n = −M
2

√
ωqωn

(Lg + LJ)(Lg + Ln)
. (S10)

We can see that through its dependence on ωn, gi,n ∝
√
n, a well-known result for multimode

coupling. In the experiments here, only the modes with ωn ∼ ωq are relevant, where n ∼ 70.

As the range of n (∼ ±5) is small, the variation of gi with n is only a few percent, so the

dependence of gi on n can be ignored.

The analytical result Eq. (S10) agrees well with the experimental data, using LT = 0.57 nH.

The comparison between this calculation and the measured coupling for both qubits is shown

in Fig. S4. Maximum coupling occurs at junction phase δ = π, where we find |gi,max|/2π ≈

45 MHz for qubit frequencies near 5.8 GHz. The coupling can be turned off by setting δ = π/2,

making LT/ cos δ very large. We turn the couplers off when characterizing the qubits.
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Figure S4: Coupling strength versus coupler junction phase δ. We measure the qubit spectrum
at different coupler bias values, similar to Fig. 3A, and fit the spectrum to obtain the coupling
strength gi. The maximum coupling is about 45 MHz for both qubits.
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4.4 Coupler-generated qubit frequency shift

The tunable couplers used here ideally only change the qubit-transmission line coupling strength.

However, changes in the coupler junction inductance LT affect the qubit resonance frequency,

as can be seen from the circuit diagram in Fig. 1B. This is accounted for by including the cou-

pler mutual inductance M , Eq. (S9), in the calculation of the qubit frequency, through its effect

on the qubit inductance Lq, which is given by

Lq = LJ + Lg −M. (S11)

In the experiment, ωn ∼ ωq ≈
1√

(Lg + LJ)Cq
, so we can use Eq. (S10) to relate the mutual

inductance to the coupling,

M = −2gi

√
Cq(Lg + Ln)(Lg + LJ). (S12)

The qubit inductance is then given by

Lq = (Lg + LJ)

(
1 + 2gi

√
Cq(Lg + Ln)

)
, (S13)

so that the qubit frequency including the coupler is given by

ω′q =
1√
LqCq

(S14)

=
1√

(Lg + LJ)Cq

1√
1 + 2gi

√
Cq(Lg + Ln)

(S15)

≈ ωq

(
1− gi

√
Cq(Lg + Ln)

)
. (S16)

We therefore find that the qubit frequency is shifted by the coupler by an amount

∆ωq = −giωq
√
Cq(Lg + Ln) = −gi

√
Lg + Ln
Lg + LJ

. (S17)

Similarly, we can show that the transmission line’s nth mode resonant frequency is shifted by

∆ωn = −giωn
√
Cn(Lg + LJ) = −gi

√
Lg + LJ
Lg + Ln

. (S18)
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Because Ln � LJ , ∆ωq is much larger than ∆ωn. According to Fig. S4, with maximum

coupling gi,max/2π = 45 MHz, the qubit frequency can be shifted by as much as−200 MHz by

tuning the coupling from off to its maximum value. This frequency shift can be compensated

by adjusting the qubit junction inductance LJ accordingly, as was done in the measurements.

In the experiments shown in Fig. 3A and B, we bias G1 to set its coupling to its maximum

value, which changes the qubit frequency through Eq. (S17). At the same time, we adjust Q1’s

Z bias, which changes the qubit junction inductance LJ . The net qubit frequency is determined

by the combination of these two effects, and is calibrated by fitting the response in Fig. 3A.

The data in Fig. 3C represent a special case of the data in Fig. 3B, where the qubit Z bias is

set to zero, keeping LJ fixed, as represented by the horizontal line after the π pulse in Q1’s

control sequence. However, the qubit frequency is still affected by the coupler. This impacts

the itinerant photon capture efficiency, and must be accounted for in the simulations (see the

Numerical Simulations section below).

In Fig. 3D, to optimize the itinerant photon capture, we adjust the qubit’s Z bias to change

LJ while tuning the coupling, such that the change of LJ and M cancel each other out, and

the qubit frequency is fixed (ideally) during the photon emission and capture process. The two

convolution pulses after the π pulse in Q1’s control sequence represent this counteracting Z

bias. In Fig. 4A, we similarly apply Z bias pulses to both qubits while tuning the couplers, as

shown by the control pulse sequences in the inset. These bias pulses not only counteract the

frequency shift from the coupler, but also adjust the qubit frequencies to match each other, as

the operating frequencies are not the same for the two qubits.

5 CHSH Bell inequality

After generating a Bell state using either the relay mode method or the shaped itinerant photon

method, we perform the CHSH form of Bell inequality test. This is done by measuringQ1 along
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either direction a, which is chosen to be the x axis on the Bloch sphere (see inset to Fig. 3D), or

along direction a′, which is chosen to be the Bloch sphere y axis. At the same time, we measure

Q2 along direction b or b′, where b is on the Bloch sphere equator, rotated by an angle θ about

the z axis with respect to a, and b′ is perpendicular to b. For each choice of axes (q1, q2) (where

q1 can be a or a′, q2 can be b or b′), we accumulate many measurements of the two qubits, and

calculate the quantum correlation E(q1, q2) = Pgg +Pee−Pge−Peg, where the subscript ge for

example means those measurement outcomes where Q1 was measured to be in |g〉 along q1 and

Q2 was measured to be in |e〉 along q2. Given the set of four quantum correlators for a given

angle θ, we then define the CHSH correlation S(θ) = E(a, b)−E(a, b′) +E(a′, b) +E(a′, b′).

The CHSH inequality states that |S| ≤ 2 for a classical system, while quantum physics predicts

|S| ≤ 2
√

2. For an ideal Bell state, S is maximized when a⊥a′, b⊥b′, and a is at ∠45◦ with

respect to b. In the experiments here however, S is maximized at a different value of θ, due to

dynamic phase accumulation in the qubits during state preparation.

6 Numerical Simulations

6.1 Multimode model simulation

We performed extensive numerical simulations to better understand and calibrate the experi-

ment. These simulations used the following rotating-frame qubit-multimode Hamiltonian:

H/~ =
∑
i=1,2

∆ωiσ
†
iσi +

N∑
n=1

(
n− N + 1

2

)
ωFSRa

†
nan +

∑
i=1,2

N∑
n=1

gi

(
σia
†
n + σ†ian

)
, (S19)

where σi and an are the annihilation operators for qubit Qi and photons in the nth standing

wave mode, respectively, ∆ωi is the qubit frequency detuning in the rotating frame, and N is

the number of standing modes included in the simulation.

In Fig. 2, where the coupling gi is weak, we included five standing modes in the simulations,

and assumed the coupling is turned on and off abruptly. Decoherence is taken into account
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using the Lindblad master equation. According to ref. (33), the effective dephasing time is

enhanced by
√

2 when transferring the quantum state from one qubit to the other, because

the dephasing noise at each qubit is uncorrelated. Taking this into account, we find that the

simulation agrees well with the experiment. According to the simulations, more than half of

the infidelity is attributed to dephasing noise. Simulations that take T2 = 10 µs for both qubits

give a state transfer process fidelity of Fp1 = 0.977, a Bell state fidelity F s1 = 0.983 and a

concurrence C = 0.980. The remaining 2 percent infidelity is attributed to energy dissipation

and interference from adjacent modes.
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Figure S5: Different simulations for the experiment shown in Fig. 3C. Simulation details are
given in the text.

For the simulations in Fig. 3 and Fig. 4, we include ten standing modes, and the coupling is

strong enough that the finite rise and fall time of the control signal has to be taken into account.

In the simulations, we assume the phase due to the external flux threaded through the coupler

loop δext is proportional to the control pulse amplitude. The coupler junction phase δ is related

to δext by (34)

δext = δ +
2Lg + Lw

LT
sin δ. (S20)
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The coupler is first biased with a DC current to give

δext = δoff = π/2 +
2Lg + Lw

LT
, (S21)

where δ = π/2 and gi = 0. We then use the high-speed control signal output of the DAC to

rapidly tune the coupling gi, combined with a separate DC current source via a bias tee mounted

on the mixing chamber stage. The filter in the DAC output has a Gaussian spectrum, so that

when we generate a rectangular output signal to set the coupling to its maximum value (where

δext = δ = π), the actual output is a convolution of the filter Gaussian and the rectangular

control signal. The external flux then changes as

δext(t) = (π − δoff) (G(wFWHM, t) ~ Rect(τ, t)) (t) + δoff , (S22)

where G(wFWHM, t) is a Gaussian function with a full-width at half-maximum (FWHM) of

wFWHM, and Rect(τ, t) is a rectangle function with unit amplitude from 0 to τ . We then solve

Eq. (S20) to obtain δ(t), and use this result in Eq. (S10) to obtain gi(t).

In Fig. S5, we compare the experimental data with different assumptions for the simulations.

The light black line treats the coupling as switched abruptly between its on and off values, i.e.

we assume wFWHM = 0. Here we see that the experimental data lags 2 ns behind the simulation.

The light red line corresponds to setting wFWHM = 2 ns, which is determined by the bandwidth

of the control signal output filter, and agrees well with the experimental data, except the photon

recapture probability is too high. This is because the qubit frequency is shifted by as much as

−200 MHz when tuning the coupling to the maximum, see Eq. (S17), not accounted for in this

simulation. The light blue line takes this frequency shift into account and is in good agreement

with the experiment.

In Fig. 3D, in addition to the Gaussian filter, we program the control signal output to adjust

wFWHM to 3 ns to optimize the photon catch probability, and compensate the qubit frequency
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shift with the qubit Z control bias. This frequency compensation is assumed to be perfect in the

simulation.

In Fig. 4A, although the couplings for both qubits are turned on simultaneously, it takes

T` = 6.3 ns for the itinerant photon to reach Q2. Therefore, from the viewpoint of the itinerant

photon, the Q2 coupling is turned on T` later than that of Q1. This time lag is taken into account

by setting g2(t) = g1(t− T`) in the simulation.

6.2 Input-output theory simulation

The multimode simulations agree well with the data, because the ratio of the maximum coupling

and the free spectral range gi,max/ωFSR is less than or of order one, so that the number of modes

N needed for the simulation (and thus the Hilbert space dimension) is not too large. However,

as the transmission line length ` increases, gi,max/ωFSR increases as
√
`, so that to maintain

numerical accuracy,N has to increase, and the Hilbert space dimension increases exponentially;

for large ` this method quickly becomes impractical. An alternative is to use input-output

theory (23,24), which treats the mode spectrum in the transmission line as continuous, and thus

is well-suited for simulating the dynamics with large gi,max/ωFSR, as long as reflections can be

ignored (we note that extensions of input-output theory allow some reflections to be included,

see e.g. ref. (35)). Here we apply the quantum Langevin equations to the state transfer process

in Fig. 4A:

dσ1

dt
= −i∆ω1σ1 −

κ1(t)

2
σ1, (S23)

dσ2

dt
= −i∆ω2σ2 −

κ2(t)

2
σ2 +

√
κ2(t)κ1(t− T`)σ1(t− T`), (S24)

where κi is the decay rate of each qubit to the transmission line. Note we have replaced the

annihilation field operator in refs. (23, 24) by the qubit annihilation operator; this replacement

is valid because there is at most one excitation in the system during the simulation. The value
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of κi can be obtained by treating the transmission line as a lumped element resistance Z0 to

ground, then transforming the linear circuit to an equivalent series RLC resonant circuit with a

series resistance Rs, see Fig. S6. The quality factor of this series RLC resonant circuit is (31)

Q =
ωq(LJ + Ls)

Rs

, (S25)

so the decay rate κi is then given by

κi =
ωq
Q

=
Rs

LJ + Ls
. (S26)

Note that treating the transmission line as a lumped element resistance is valid only when the

dynamics are completed within the round-trip time 2T`, so that there are no retro-reflections.
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cos𝛿
LT +Lw

Lg Lg Z0

Cq

LJ

cos𝛿
LT +Lw

Rs

Ls

Cq

LJ

Figure S6: Linear circuit transformation for calculating the qubit decay rate into the transmis-
sion line. A Linear circuit model for a qubit connected to the transmission line by a tunable
coupler. B Assuming no reflection, we can treat the transmission line as a lumped element re-
sistance Z0. C Transforming the circuit in B to an equivalent series RLC circuit with series
resistance Rs. The circuit segments in the dashed rectangles in B and C have equal impedances
at angular frequency ωq. From this we can calculate the qubit decay rate κi into the transmission
line.

We obtain the time evolution of δ as in the multimode model simulation, from which we

calculate κi(t), then insert this result into the quantum Langevin equations Eqs. (S23) and (S24)

to solve for the dynamics; see Fig. S7. The qubit frequency shift is assumed to be perfectly

compensated in the simulation, so we take ∆ωi = 0. The simulation agrees well with the

data within the round-trip time 2T`, then starts to deviate because of reflections. Note the

state transfer process fidelity is not affected by changes in the transmission line length ` in this

simulation, unless the channel decoherence is taken into account.
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Figure S7: Input-output theory simulation for the state transfer process in Fig. 4A in the main
text. The simulations (solid lines) fits well with the data within the round-trip time 2T`, then
starts to deviate after 2T` because of the retro-reflection.

In the experiments in refs. (7–9), a circulator was interposed in the transmission line con-

necting the two communication nodes, eliminating reflections and at the same time providing

a means to probe the emitted photon waveform, allowing tune-up of the emission profile to

achieve the desired symmetric envelope. In our itinerant photon experiment, we have no di-

rect means to probe the emitted photon envelope. However, according to input-output theory,

|〈√κ1σ1〉|2 is the squared mean field amplitude of the itinerant photon emitted from Q1. In

Fig. S8 we show this quantity, calculated from the simulation results shown in Fig. S7, these re-

sults being themselves close to the experimental data. We see that the emitted photon envelope

is relatively symmetric, even with the simple coupler control pulse used in the experiment. This

symmetry is the key reason that we are able to achieve such high-fidelity state transfers using

the itinerant photon method.

17



0 4 8 12

tins (ns)

0

0.25

0.5

|⟨
⟩|

√
κ
σ

1
1

2
 (

p
h

o
to

n
s
/n

s
)

0

100

200

κ
π

1
/2

 (
M

H
z
)

Figure S8: Emitted photon envelope estimated from simulations. The horizontal axis is the
instantaneous time tins of the dynamic evolution, calculated for a control pulse width set to
t = 12.2 ns for optimized state transfer. Left axis (blue) shows the emitted photon envelope
|〈√κ1σ1〉|2; right axis (orange) shows the qubit decay rate κ1/2π. Black dashed line is the
time-reversed form for the emitted photon envelope, reasonably close to the blue forward-time
envelope.

7 Optimized itinerant photon catch for Q2

In Fig. 3D we show the data for optimizing qubit Q1’s itinerant photon “catch” process. Here

we show the analogous data for qubit Q2, see Fig. S9. The maximum photon catch probability

is found to be 0.917± 0.006.
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Figure S9: Optimized itinerant photon catch process for qubit Q2, analogous to Fig. 3D in the
main text with a slight adjustment to the control pulse optimization. The capture probability is
found to be 0.917± 0.006. Solid line is simulation.
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