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We consider a simple model of a Josephson junction phase qubit coupled to a solid-state nanoelectrome-
chanical resonator. This and many related qubit-resonator models are analogous to an atom in an electromag-
netic cavity. When the systems are weakly coupled and nearly resonant, the dynamics is accurately described
by the rotating-wave approximatiqgiRWA) or the Jaynes-Cummings model of quantum optics. However, the
desire to develop faster quantum-information-processing protocols necessitates approximate, yet analytic de-
scriptions that are valid for more strongly coupled qubit-resonator systems. Here we present a simple theoret-
ical technique, using a basis of dressed states, to perturbatively account for the leading-order corrections to the
RWA. By comparison with exact numerical results, we demonstrate that the method is accurate for moderately
strong coupling and provides a useful theoretical tool for describing fast quantum information processing. The
method applies to any quantum two-level system linearly coupled to a harmonic oscillator or single-mode

boson field.
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[. INTRODUCTION are used for fault-tolerant encoding. In practice, it will be

important to havep as small as possible. To approach this

Josephson junctions have been shown to be effective quimit, we wish to study qubit-resonator systems with stronger
bit elements for solid-state quantum computing architecturegoupling (larger g) than may be correctly described by the
[1-6]. Several proposals for multiqubit coupling introduce RWA. This will allow us to consider faster switching times
electromagneti¢7—15 or mechanica[16,17 resonators or  for qubit-resonator gates and to understand to what extent the
other oscillator§18-2Q to mediate interactions between the coupling may be increased while still retaining good fidelity.
qubits. Such resonator-based coupling schemes have addi- |n this paper, we use a basis of dressed st§2é§ to
tional functionality resulting from the ability to tune the qu- calculate the leading-order corrections to the RWA for a Jo-
bits relative to the resonator frequency, as well as to eacBephson junction phase qubit coupled to a solid-state nano-
other. These qubit-resonator systems are analogous to one @ectromechanical resonator or for any other model of a two-
more tunable few-level atoms in an electromagnetic cavitylevel system linearly coupled to a single-mode boson field.
and the dynamics is often accurately described by th&y comparison with exact numerical results, we demonstrate
rotating-wave approximatioiRWA) or Jaynes-Cummings that the method is accurate for moderately strong coupling
model of quantum opticf21]. and provides a useful theoretical tool for describing fast

For a qubit with energy level spacine coupled with  quantum information processing.
strengthg to a resonator with angular frequeney and qual-
ity factor Q, the RWA is valid when both|w,—Ae/%|
<wy/Q andg<<Ae. However, the resonant Rabi frequency,
which is proportional tog, is then much smaller than the
qubit frequencyAe/#. Therefore, restrictingy to be in the A. Qubit-resonator Hamiltonian
;Irrggéirsmgiﬁgtoiipéllggv;?glgi Ir?:g:sgoa?;qugvur:gf?évrc:r“gg- The_Ham|Iton|an that descrlbes_ the low-energy dy.namllcs
erations to be performed during the availa{ble guantum coherqf a single Iarge-area, .current—b|ased Josephson Junction,

o . coupled to a piezoelectric nanoelectromechanical disk reso-
ence lifetime. Here we use the term weak coupling to refer t%ator can be written 446,17
the conditiong<<Ae, and strong coupling to mea~ Ae. ' ’
prever, in cavit_y guantum electrodyn_amics strong cou- H=> emchm+ﬁwoaTa—igE Xmm’CTmCm’(a_aT)u (1)
pling means thag is larger than the atomic and cavity line- m -
widths, but usually still much smaller thafte. Thus, it
would be more accurate to refer to the regime of interest invhere the{cl} and{c,} denote particle creation and annihi-
this paper as theuperstrongcoupling regime. lation operators for the Josephson junction states

The threshold theorerf22—29 states that if the compo- =0,1,2,..) aanda’ denote ladder operators for the phonon
nent failure probabilityp is below some thresholgl,, a com-  states of the resonator’s dilatation@hickness oscillation
putation with an error probability bounded bymay be ac- mode of frequencyw,, g is a coupling constant with dimen-
complished, provided a sufficient number of quantum gatesions of energy, ang,,,y =(m|8im’). The value ofy depends

II. JUNCTION-RESONATOR DYNAMICS
IN THE DRESSED-STATE BASIS
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Nanomechanical
to bias and resonator to bias and . h Wq th (wd)
measurement \ measurement VVY =€t (] + 1)hw0 -———+to ) (8)
electronics electronics 2 2
1
andH;d00y=0.0n resonance, these reduce to
w0+ D—igll,j)
FIG. 1. Two current-biased Josephson juncticarsssed boxes ) = ——F=—— (0g=0) 9
coupled to a piezoelectric disk resonator. V2
and
on material properties and size of the resonator and can be 70(0)
designed to achieve a wide range of val{8,17. An illus- W — e+ (j + Dy + U\f,—j 1o (0g=0).
tration showing two phase qubits coupled to the same reso-
nator is given in Fig. 1. (10)

For simplicity we will consider only two levels in a single ) ) .
junction; genera”zation of our method to more than two Below we will restrict ourselves eXClUSlVEly to the reso-
junction states is cumbersome but straightforwday].  hant case. . _
However, all possible phonon-number states are included. !N what follows, we will need the matrix elementséfin
The Hamiltonian may then be written as the sum of twothe dressed-state basis, which are given by
terms,H=H;c+V. The first term ;
WV = - e 2X000)+1,7 = VI + X006 jr41
Hic= €Chco + exCicy + fimpaa— igxgi clcea — clicia'l 1 2 T b

(2) - iO'\,“”JTXOlgj]jq,z_ io’ \J + 2X015j+2,j’
is the exactly solvable Jaynes-Cummings Hamiltonian, the + 00 % (\j + 18410 = \jé el (1D)
eigenfunctions of which are known as dressed states. We will e -
consider the second term and
= — ig[XoChCo(a—a’) + XgiClcia — XgiCicoa’ WrVI00) = i9X00 Q6(0) (12

5'_(7 — 0Oj1.
2 7% T2t

+ Xllclcl(a -a)] (3 v

as a perturbation. The RWA applied to the Hamiltonldn
amounts to neglecting. Therefore, perturbatively including

V is equivalent to perturbatively going beyond the RWA. In quantum computing applications one will often be in-
terested in calculating transition amplitudes of the form

C. Dressed-state propagator

B. Dressed states (fle Ay, (13
It will be useful to define a set of Rabi frequencies ac-wherel|i) and|f) are arbitrary initial and final states of the
cording to uncoupled qubit-resonator system. Expandingand|f) in

the dressed-state basis reduces the time-evolution problem to
— ./ 2 H—-
Qj(0d =V[QOP +wg j=01,2, ..., (4)  that of calculating the quantity
where 6o (1) = (e ™y, (14)
0(0) = (j + DV 2g|x0ql/%) (5)

are theresonantRabi frequencies for a qubit coupled to an
oscillator containing phonons and where

as well as(y{]e™"|00) and (00je"™*|00). Gﬁ‘,"(t) is a
propagator in the dressed-state basis, and would be equal to
8,408 € WiV if V/ were absent—that is, in the RWES].
wg= wy— Aelt (6)  Although it is possible to directly construct perturbative ex-
pressions for the propagator in than) basis, the quantity

is the resonator-qubit detuning frequency. The vacuym defined in Eq(14) turns out to be the simplest.
=0) Rabi frequency on resonance(i(0) = 2g|Xy| /. To be specific, we imagine preparing the systerred in

The eigenstates dfi;c, or the dressed states, are labeledthe statd10), which corresponds to the qubit in the excited
by the nonnegative integejs0,1,2,... and asigno==+1, statem=1 and the resonator in the ground state0. We
then calculate the interaction-representation probability am-

_ [9Q)(0q) +04]0,j + 1) —i5;(0)]1,)) plitude

|4 . ()

\/2 Qj(wd)[ﬂj(wd) + O'wd] Cmn(t) = eiEmr;/h<mde—th/h|10> (15)

where |mn)=|m);;®|n);; are the eigenstates of the un- for the system at a later timeto be in the statémn). Here
coupled system. These states, together Wi, form a  E,,=e,+nhwy. Inserting complete sets of the dressed states
complete basis. The energies are leads to
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Coolt) = % (4120100 ™|y, (16) ALY
aj

[Wop» = Ago| 100) =X ———— v Ut

jo i

IV, IV]00)

and, formn# 00,

W |mn>>< -*o‘)(<¢3|10>) + 3 — | (@9
mnt eIE i ( ] I__ N ) ~ : : j
Conl) = 2 (gilmn ) \Gjg Gjg / \([10) hoe WrwW
(17 and
Using the relations 00IV1u? WM
) w0 = 1+ 8D g 5 (',—W’,,wgw
on) = Sll¢5) +14p0] (forn=0) (19 : Votaie A T
<00|V|l// ><¢ V)
and 00
WY (W - V\f’)
i + -
1 = v = ) (19 R |v|oo><oo|v|¢/;’>| . )
;' I
we obtain W (W =W, )
TN 17N 1T W
i 1\T/c G 1 <¢ |V|¢H><¢" V|‘//J>
0 = g )( o 99)( [ DD |, e
=22 ) o op/\-1) @O o s (W =W YW~ W)
and whereAg, and theA;,, are normalization factors.
. o e\ 1 Writing out Eq.(22) explicitly as
ool )2
ol =22 1)\t o /\-1) Y G () = (W1 Woo (U, [Wog)" & 1500
So far everything is exact within the model defined in Eq. + (z,bﬂ‘l’,—‘;)(tpjf’, (Ui e, (27)
. I

To proceed, we expand the dressed-state propagator in a
basis ofexacteigenstate$V’,) of H, leading to and again making use of the fact that the matrix elements of

V diagonal inj vanish, leads to

o i€ t/ﬁ ’ *
(t) E VAN w)e (22) GI (1) = 5,82, o0 4 Ago<lﬂg|v|oo><¢g |V|00) -igoq/h

Here&,, is the energy of stationary stat#,,). The propaga-
tor is an infinite sum of periodic functions of time. We ap- 5 (g'|V|00y (00 V| )"
proximate this quantity by evaluating th#,) and £, per- + A5, (1= 6,41) ;
turbatively in the dressed-state basis. Wo(Wg = W5 )
The leading-order corrections to the dressed-state energies o T T .
are of orde’VZ. We obtain AR AN I
+ ; — e (00
(UgVI0OF? _ [(wIvI00 1207 (W =6 JOAg =)
Eo0=— 2 WO + W )
’ ° ' A2 (-] YEMOOKOVIE)
2 2 2 o’ oo’ ’ ’
Iy, =) 23 WE' (W5 - wp)
25w wy i
NG
and + gl 0o’ t1h
o WG~ WE)(Wg' - W)
71V|00) 2 oIV )2 ,
s MOOE s, MO UMK M
jo j W2 ' + 2 A |fﬂ/ﬁ + O(V3)
P e W W 17 (W= W) (W - W
j#OU ( VW)( )
We will also need theecondorder eigenfunctions, which, (29)
for a perturbation having no diagonal dressed-state matrix
elements, are or
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e 1oatlh
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giE1gth

2,2
}2 9% _giEth(29)
25 g - W) (WE - W)

where

Kyt = \‘“‘EXOO"‘ (T(T’Xll. (30)

og

Note that there are no ord®fcorrections to the dressed-
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FIG. 3. Probabilitiesic,? and |cqy|? for the strongly coupled
caseg/Ae=0.30. Here there are large deviations from the RWA
behavior, which are correctly accounted for by the dressed-state
perturbative method. Note the tenfold increase in transfer speed
compared with that of Fig. 2.

A [1 9 X01 g ((\EX00+ o0’ X11)?
1o = 2 o
T e
. (\3%00+ V200" %11)? .\ 3x3, )]_1/2
(Wf - W5 )? (Wf - W5 )?
(33

state propagator. Because of this property, the leading- ordé\nd

corrections are of ordev?, and it is therefore necessary to
use second-order perturbative eigenfunctions to obtain all Ay, =

such second-order terms.

Finally, we note that the normalization constants are sim-

ply
2 2 -1/2
g X00 Xo1
Ago= { —E<—+—)} . (3D
27 \(W9? (wp)?
Ags=| 1+ gxo ((\Zxoo"'mf X11)°
7 2(\/\/")2 4 U, (WG —Wg )2
22 -1/2
+ #,) , (32)
(WG - W)
1- T //)/ -\\\| |/z
08k s N T |
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FIG. 2. Time evolution of probabilitief¢?> and |cy,|? for the

weakly coupled case of/Ae=0.03. Here the exact, RWA, and

dressed-state perturbative results are essentially equivalent.
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Ill. TOWARDS INFORMATION PROCESSING
WITH STRONG COUPLING

In this section, we test our perturbed dressed-state method
for the case of a finite-dimensional single-qubit, five-phonon
system. The junction has paramet&s43.1 meV andg,
=53.4 meV, corresponding to that of R@¢4]. The resonator
has a frequencywy/27 of 10 GHz, and the interaction
strengthg varies from weakKg< Ae) to strong(g= Ae) cou-
pling. The bias current is chosen to make the the system
exactly in resonance, and this bias is sufficiently smaller than
the critical current so that the junction states are well ap-
proximated by harmonic oscillator eigenfunctions. The
Hamiltonian for this system is diagonalized numerically, and
the probability amplitudes,,,(t) are calculated exactly, pro-
viding both a test of the accuracy of the analytic perturbative
solutions and an estimate of the range of interaction strengths
g for which it is valid. Setting the initial state to bg,,(0)
=6mdn0, @s assumed previously, we simulate the transfer of
a qubit from the Josephson junction to the resonator, by leav-
ing the systems in resonance for half a vacuum Rabi period
7h | glX%oy| [16,17.

Figures 2, 3, and 4 show the time evolution of the occu-
pation probabilitiesc, > and|cy,|?, for different values ofy.

In Fig. 2, we plot the results for very weak couplirgf,Ae
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FIG. 4. Probabilitiesc,g? and |coy|? for the strongly coupled FIG. 5. The fidelity of a state transfer from Josephson junction
caseg/Ae=0.50. Here both the RWA and dressed-state perturbativéo nanomechanical resonator as a function of interaction strength
approximations fail. Note the difference in scale between the upper and lower curves.

=0.03. The evolution takes the junction quldit;;and trans-  ing the resonator. In Fig. 5 we pl&t;andFsas a function
fers it to and from the resonator periodically. The exact,0f g. Typically, the junction fidelityF,; remains close to
RWA, and dressed-state perturbative results are all the samunity, with some oscillations, for all couplings. This behavior
to within the thickness of the lines shown in Fig. 2. Thus, foris a consequence of the fact that there is always a time where
this value ofg, the RWA is extremely accurate. |c,10/2 becomes small, as is evident in Figs. 3 and 4. However,
In Fig. 3, we plot the probabilities for stronger coupling, because of leakage to other states, the resonator fidglity
g/Ae=0.30. For this coupling strength, the RWA is observeddecreases significantlgagain with oscillations due to the
to fail. For example, the RWA predicts a perfect state transfefswitching” of t;, with g) with increasing interaction
between the junction and the resonator, and does not exhilstrength. The lower curve in Fig. 5 shows tlfgts=90% is
the oscillations present in the exact solution. The dressedpossible withg=0.15A¢, which allows a state transfer in
state perturbative approximation does correctly capture thesender 5 ns.
oscillations. In Fig. 4, we show the same quantities for the
caseg/Ae=0.5. At this coupling strength, both the RWA and V. DISCUSSION
the dressed-state perturbative approximation break down.  We have developed a theoretical technique to analytically
calculate the leading-order perturbative corrections to the
IV. STATE TRANSFER FIDELITY RWA or JayneS-CUmmingS Hamiltonian for a quantum two-
level system linearly coupled to a harmonic oscillator or
In this final section, we briefly investigate to what extentsingle-mode boson field, a model central to many current
we may increase the junction-resonator couplingnd still  quantum computing architectures. Such corrections are nec-
have an accurate state transfer from the Josephson junctiegsary to treat the fast information-processing regime where
to the resonator. As before, we start at titse in the state  the interaction strength approaches the qubit level spacing.
|10). In order to define the fidelity of the state transfer op-The method was applied to a current-biased Josephson junc-
eration, we first determine the tinig;, of the minimum of  tion coupled to a piezoelectric nanoelectromechanical disk
the probability|c,(t)[* Recall that|cio® is the probability  resonator, and good agreement with exact numerical results
that the junction is in then=1 excited qubit state and the was obtained.
resonator is in th@=0 vacuum state.
It will be convenient to define two fidelitiesE;;=1 ACKNOWLEDGMENTS
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