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We consider a simple model of a Josephson junction phase qubit coupled to a solid-state nanoelectrome-
chanical resonator. This and many related qubit-resonator models are analogous to an atom in an electromag-
netic cavity. When the systems are weakly coupled and nearly resonant, the dynamics is accurately described
by the rotating-wave approximation(RWA) or the Jaynes-Cummings model of quantum optics. However, the
desire to develop faster quantum-information-processing protocols necessitates approximate, yet analytic de-
scriptions that are valid for more strongly coupled qubit-resonator systems. Here we present a simple theoret-
ical technique, using a basis of dressed states, to perturbatively account for the leading-order corrections to the
RWA. By comparison with exact numerical results, we demonstrate that the method is accurate for moderately
strong coupling and provides a useful theoretical tool for describing fast quantum information processing. The
method applies to any quantum two-level system linearly coupled to a harmonic oscillator or single-mode
boson field.
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I. INTRODUCTION

Josephson junctions have been shown to be effective qu-
bit elements for solid-state quantum computing architectures
[1–6]. Several proposals for multiqubit coupling introduce
electromagnetic[7–15] or mechanical[16,17] resonators or
other oscillators[18–20] to mediate interactions between the
qubits. Such resonator-based coupling schemes have addi-
tional functionality resulting from the ability to tune the qu-
bits relative to the resonator frequency, as well as to each
other. These qubit-resonator systems are analogous to one or
more tunable few-level atoms in an electromagnetic cavity,
and the dynamics is often accurately described by the
rotating-wave approximation(RWA) or Jaynes-Cummings
model of quantum optics[21].

For a qubit with energy level spacingDe coupled with
strengthg to a resonator with angular frequencyv0 and qual-
ity factor Q, the RWA is valid when bothuv0−De /"u
!v0/Q andg!De. However, the resonant Rabi frequency,
which is proportional tog, is then much smaller than the
qubit frequencyDe /". Therefore, restrictingg to be in the
simpler weak-coupling regime leads to quantum information
processing that is slower than necessary, allowing fewer op-
erations to be performed during the available quantum coher-
ence lifetime. Here we use the term weak coupling to refer to
the conditiong!De, and strong coupling to meakg,De.
However, in cavity quantum electrodynamics strong cou-
pling means thatg is larger than the atomic and cavity line-
widths, but usually still much smaller thanDe. Thus, it
would be more accurate to refer to the regime of interest in
this paper as thesuperstrongcoupling regime.

The threshold theorem[22–25] states that if the compo-
nent failure probabilityp is below some thresholdpth, a com-
putation with an error probability bounded byh may be ac-
complished, provided a sufficient number of quantum gates

are used for fault-tolerant encoding. In practice, it will be
important to havep as small as possible. To approach this
limit, we wish to study qubit-resonator systems with stronger
coupling (larger g) than may be correctly described by the
RWA. This will allow us to consider faster switching times
for qubit-resonator gates and to understand to what extent the
coupling may be increased while still retaining good fidelity.

In this paper, we use a basis of dressed states[26] to
calculate the leading-order corrections to the RWA for a Jo-
sephson junction phase qubit coupled to a solid-state nano-
electromechanical resonator or for any other model of a two-
level system linearly coupled to a single-mode boson field.
By comparison with exact numerical results, we demonstrate
that the method is accurate for moderately strong coupling
and provides a useful theoretical tool for describing fast
quantum information processing.

II. JUNCTION-RESONATOR DYNAMICS
IN THE DRESSED-STATE BASIS

A. Qubit-resonator Hamiltonian

The Hamiltonian that describes the low-energy dynamics
of a single large-area, current-biased Josephson junction,
coupled to a piezoelectric nanoelectromechanical disk reso-
nator, can be written as[16,17]

H = o
m

emcm
† cm + "v0a

†a − igo
mm8

xmm8cm
† cm8sa − a†d, s1d

where thehcm
† j and hcmj denote particle creation and annihi-

lation operators for the Josephson junction statessm
=0,1,2, . . .d a anda† denote ladder operators for the phonon
states of the resonator’s dilatational(thickness oscillation)
mode of frequencyv0, g is a coupling constant with dimen-
sions of energy, andxmm8;kmudum8l. The value ofg depends
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on material properties and size of the resonator and can be
designed to achieve a wide range of values[16,17]. An illus-
tration showing two phase qubits coupled to the same reso-
nator is given in Fig. 1.

For simplicity we will consider only two levels in a single
junction; generalization of our method to more than two
junction states is cumbersome but straightforward[27].
However, all possible phonon-number states are included.
The Hamiltonian may then be written as the sum of two
terms,H=HJC+V. The first term

HJC; e0c0
†c0 + e1c1

†c1 + "v0a
†a − igx01fc1

†c0a − c0
†c1a

†g
s2d

is the exactly solvable Jaynes-Cummings Hamiltonian, the
eigenfunctions of which are known as dressed states. We will
consider the second term

V ; − igfx00c0
†c0sa − a†d + x01c0

†c1a − x01c1
†c0a

†

+ x11c1
†c1sa − a†dg s3d

as a perturbation. The RWA applied to the HamiltonianH
amounts to neglectingV. Therefore, perturbatively including
V is equivalent to perturbatively going beyond the RWA.

B. Dressed states

It will be useful to define a set of Rabi frequencies ac-
cording to

V jsvdd ; ÎfV js0dg2 + vd
2, j = 0,1,2, . . . , s4d

where

V js0d ; s j + 1d1/2s2gux01u/"d s5d

are theresonantRabi frequencies for a qubit coupled to an
oscillator containingj phonons and where

vd ; v0 − De/" s6d

is the resonator-qubit detuning frequency. The vacuums j
=0d Rabi frequency on resonance isV0s0d=2gux01u /".

The eigenstates ofHJC, or the dressed states, are labeled
by the nonnegative integersj =0,1,2, . . . and asign s= ±1,

uc j
sl ;

fV jsvdd + svdgu0,j + 1l − isV js0du1,jl

Î2 V jsvddfV jsvdd + svdg
, s7d

where umnl;umlJJ^ unlJJ are the eigenstates of the un-
coupled system. These states, together withu00l, form a
complete basis. The energies are

Wj
s ; e0 + s j + 1d"v0 −

"vd

2
+ s

"V jsvdd

2
, s8d

andHJCu00l=0.On resonance, these reduce to

uc j
sl → u0,j + 1l − isu1,jl

Î2
svd = 0d s9d

and

Wj
s → e0 + s j + 1d"v0 + sÎj + 1

"V0s0d
2

svd = 0d.

s10d

Below we will restrict ourselves exclusively to the reso-
nant case.

In what follows, we will need the matrix elements ofV in
the dressed-state basis, which are given by

kc j
suVuc j8

s8l = −
ig

2
fÎj + 2x00d j+1,j8 − Îj + 1x00d j ,j8+1

− isÎjx01d j ,j8+2 − is8Îj + 2x01d j+2,j8

+ ss8x11sÎj + 1d j+1,j8 − Îjd j ,j8+1dg s11d

and

kc j
suVu00l =

igx00

Î2
d j0 − s

V0s0d
2Î2

d j1. s12d

C. Dressed-state propagator

In quantum computing applications one will often be in-
terested in calculating transition amplitudes of the form

kf ue−iHt/"uil, s13d

where uil and ufl are arbitrary initial and final states of the
uncoupled qubit-resonator system. Expandinguil and ufl in
the dressed-state basis reduces the time-evolution problem to
that of calculating the quantity

Gjj 8
ss8std ; kc j

sue−iHt/"uc j8
s8l, s14d

as well askc j
sue−iHt/"u00l and k00ue−iHt/"u00l. Gjj 8

ss8std is a
propagator in the dressed-state basis, and would be equal to

dss8d j j 8e
−iWj

st/" if V were absent—that is, in the RWA[28].
Although it is possible to directly construct perturbative ex-
pressions for the propagator in theumnl basis, the quantity
defined in Eq.(14) turns out to be the simplest.

To be specific, we imagine preparing the system att=0 in
the stateu10l, which corresponds to the qubit in the excited
statem=1 and the resonator in the ground staten=0. We
then calculate the interaction-representation probability am-
plitude

cmnstd ; eiEmnt/"kmnue−iHt/"u10l s15d

for the system at a later timet to be in the stateumnl. Here
Emn;em+n"v0. Inserting complete sets of the dressed states
leads to

FIG. 1. Two current-biased Josephson junctions(crossed boxes)
coupled to a piezoelectric disk resonator.
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c00std = o
s j

kc j
su10lk00ue−iHt/"uc j

sl, s16d

and, formnÞ00,

cmnstd = eiEmnt/"o
j=0

` Skc j
+umnl

kc j
−umnl

D†SGj0
++ Gj0

+−

Gj0
−+ Gj0

−−DSkc0
+u10l

kc0
−u10l

D .

s17d

Using the relations

u0nl =
1
Î2

fucn−1
+ l + ucn−1

− lg sfor n Þ 0d s18d

and

u1nl =
i

Î2
fucn

+l − ucn
−lg, s19d

we obtain

c01std =
i

2
eiE01t/"S1

1
D†SG00

++ G00
+−

G00
−+ G00

−−DS 1

− 1
D s20d

and

c10std =
1

2
eiE10t/"S 1

− 1
D†SG00

++ G00
+−

G00
−+ G00

−−DS 1

− 1
D . s21d

So far everything is exact within the model defined in Eq.
(1).

To proceed, we expand the dressed-state propagator in a
basis ofexacteigenstatesuCal of H, leading to

Gjj 8
ss8std = o

a

kc j
suCalkc j8

s8uCal*e−iEat/". s22d

HereEa is the energy of stationary stateuCal. The propaga-
tor is an infinite sum of periodic functions of time. We ap-
proximate this quantity by evaluating theuCal and Ea per-
turbatively in the dressed-state basis.

The leading-order corrections to the dressed-state energies
are of orderV2. We obtain

E00 = − o
s
F ukc0

suVu00lu2

W0
s +

ukc1
suVu00lu2

W1
s G

=−
g2

2 o
s
S x00

2

W0
s +

x01
2

W1
sD s23d

and

E js = Wj
s +

ukc j
suVu00lu2

Wj
s + o

j8Þ j ,s8

ukc j
suVuc j8

s8lu2

Wj
s − Wj8

s8
. s24d

We will also need thesecond-order eigenfunctions, which,
for a perturbation having no diagonal dressed-state matrix
elements, are

uC00l = A00Fu00l − o
js

kc j
suVu00l

Wj
s uc j

sl

+ o
j j 8ss8

kc j
suVuc j8

s8lkc j8
s8uVu00l

Wj
sWj8

s8
uc j

slG s25d

and

uC jsl = AjsFuc j
sl +

k00uVuc j
sl

Wj
s u00l+ o

j8s8Þ js
Skc j8

s8uVuc j
sl

Wj
s − Wj8

s8
uc j8

s8l

+
k00uVuc j8

s8lkc j8
s8uVuc j

sl

Wj
ssWj

s − Wj8
s8d

u00l

+
kc j8

s8uVu00lk00uVuc j
sl

Wj
ssWj

s − Wj8
s8d

uc j8
s8lD

+ o
j8s8Þ js

o
j9s9Þ js

kc j8
s8uVuc j9

s9lkc j9
s9uVuc j

sl

sWj
s − Wj8

s8dsWj
s − Wj9

s9d
uc j8

s8lG , s26d

whereA00 and theAjs are normalization factors.
Writing out Eq.(22) explicitly as

Gjj 8
ss8std = kc j

suC00lkc j8
s8uC00l*e−iE00t/"

+ o
j̄s̄

kc j
suC j̄s̄lkc j8

s8uC j̄s̄l*e−iEs̄t/", s27d

and again making use of the fact that the matrix elements of
V diagonal inj vanish, leads to

G00
ss8std = dss8A0s

2 e−iE0st/" + A00
2 kc0

suVu00lkc0
s8uVu00l*

W0
sW0

s8
e−iE00t/"

+ A0s
2 s1 − dss8dF kc0

s8uVu00l*k00uVuc0
sl*

W0
ssW0

s − W0
s8d

+ o
j̄Þ0,s̄

kc0
s8uVkc j̄

s̄u*kc j̄
s̄uVuc0

sl*

sW0
s − W0

s8dsW0
s − Wj̄

s̄d
Ge−iE0st/"

+ A0s8
2 s1 − dss8dF kc0

suVu00lk00uVuc0
s8l

W0
s8sW0

s8 − W0
sd

+ o
j̄Þ0,s̄

kc0
suVuc j̄

s̄lkc j̄
s̄uVuc0

s8l

sW0
s8 − W0

sdsW0
s8 − Wj̄

s̄d
Ge−iE0s8t/"

+ o
j̄Þ0,s̄

Aj̄s̄
2

kc0
suVuc j̄

s̄lkc0
s8uVuc j̄

sl*

sWj̄
s̄

− W0
sdsWj̄

s̄
− W0

s8d
e−iE j̄s̄t/" + OsV3d

s28d

or
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G00
ss8std = dss8A0s

2 e−iE0st/" + A00
2 g2x00

2

2W0
sW0

s8
e−iE00t/"

+ A0s
2

1 − dss8

W0
s − W0

s8Fg2x00
2

2W0
s + o

s̄

S g2Xss̄Xs8s̄

4sW0
s − W1

s̄d

+
g2x01

2

2sW0
s − W2

s̄d
DGe−iE0st/" − A0s8

2 1 − dss8

W0
s − W0

s8F g2x00
2

2W0
s8

+ o
s̄
S g2Xss̄Xs8s̄

4sW0
s8 − W1

s̄d
+

g2x01
2

2sW0
s8 − W2

s̄d
DGe−iE0s8t/"

+
1

4o
s̄

A1s̄
2

g2Xss̄Xs8s̄

sW1
s̄ − W0

sdsW1
s̄ − W0

s8d
e−iE1s̄t/"

+
1

2o
s̄

A2s̄
2 g2x01

2

sW2
s̄ − W0

sdsW2
s̄ − W0

s8d
e−iE2s̄t/", s29d

where

Xss8 ; Î2x00 + ss8x11. s30d

Note that there are no orderV corrections to the dressed-
state propagator. Because of this property, the leading-order
corrections are of orderV2, and it is therefore necessary to
use second-order perturbative eigenfunctions to obtain all
such second-order terms.

Finally, we note that the normalization constants are sim-
ply

A00 = F1 +
g2

2 o
s
S x00

2

sW0
sd2 +

x01
2

sW1
sd2DG−1/2

, s31d

A0s = F1 +
g2x00

2

2sW0
sd2 +

g2

4 o
s8
S sÎ2x00 + ss8x11d2

sW0
s − W1

s8d2

+
2x01

2

sW0
s − W2

s8d2DG−1/2

, s32d

A1s = F1 +
g2x01

2

2sW1
sd2 +

g2

4 o
s8
S sÎ2x00 + ss8x11d2

sW1
s − W0

s8d2

+
sÎ3x00 + Î2ss8x11d2

sW1
s − W2

s8d2
+

3x01
2

sW1
s − W3

s8d2DG−1/2

,

s33d

and

A2s = F1 +
g2

4 o
s8
S 2x01

2

sW2
s − W0

s8d2
+

sÎ3x00 + Î2ss8x11d2

sW2
s − W1

s8d2

+
s2x00 + Î3ss8x11d2

sW2
s − W3

s8d2
+

4x01
2

sW2
s − W4

s8d2DG−1/2

. s34d

III. TOWARDS INFORMATION PROCESSING
WITH STRONG COUPLING

In this section, we test our perturbed dressed-state method
for the case of a finite-dimensional single-qubit, five-phonon
system. The junction has parametersEJ=43.1 meV andEc
=53.4 meV, corresponding to that of Ref.[4]. The resonator
has a frequencyv0/2p of 10 GHz, and the interaction
strengthg varies from weaksg!Ded to strongsg<Ded cou-
pling. The bias current is chosen to make the the system
exactly in resonance, and this bias is sufficiently smaller than
the critical current so that the junction states are well ap-
proximated by harmonic oscillator eigenfunctions. The
Hamiltonian for this system is diagonalized numerically, and
the probability amplitudescmnstd are calculated exactly, pro-
viding both a test of the accuracy of the analytic perturbative
solutions and an estimate of the range of interaction strengths
g for which it is valid. Setting the initial state to becmns0d
=dm1dn0, as assumed previously, we simulate the transfer of
a qubit from the Josephson junction to the resonator, by leav-
ing the systems in resonance for half a vacuum Rabi period
p" /gux01u [16,17].

Figures 2, 3, and 4 show the time evolution of the occu-
pation probabilitiesuc10u2 and uc01u2, for different values ofg.
In Fig. 2, we plot the results for very weak coupling,g/De

FIG. 2. Time evolution of probabilitiesuc10u2 and uc01u2 for the
weakly coupled case ofg/De=0.03. Here the exact, RWA, and
dressed-state perturbative results are essentially equivalent.

FIG. 3. Probabilitiesuc10u2 and uc01u2 for the strongly coupled
caseg/De=0.30. Here there are large deviations from the RWA
behavior, which are correctly accounted for by the dressed-state
perturbative method. Note the tenfold increase in transfer speed
compared with that of Fig. 2.
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=0.03. The evolution takes the junction qubitu1lJJ and trans-
fers it to and from the resonator periodically. The exact,
RWA, and dressed-state perturbative results are all the same
to within the thickness of the lines shown in Fig. 2. Thus, for
this value ofg, the RWA is extremely accurate.

In Fig. 3, we plot the probabilities for stronger coupling,
g/De=0.30. For this coupling strength, the RWA is observed
to fail. For example, the RWA predicts a perfect state transfer
between the junction and the resonator, and does not exhibit
the oscillations present in the exact solution. The dressed-
state perturbative approximation does correctly capture these
oscillations. In Fig. 4, we show the same quantities for the
caseg/De=0.5. At this coupling strength, both the RWA and
the dressed-state perturbative approximation break down.

IV. STATE TRANSFER FIDELITY

In this final section, we briefly investigate to what extent
we may increase the junction-resonator couplingg and still
have an accurate state transfer from the Josephson junction
to the resonator. As before, we start at timet=0 in the state
u10l. In order to define the fidelity of the state transfer op-
eration, we first determine the timetmin of the minimum of
the probability uc10stdu2 Recall thatuc10u2 is the probability
that the junction is in them=1 excited qubit state and the
resonator is in then=0 vacuum state.

It will be convenient to define two fidelities:FJJ;1
− uc10stmindu2 is the fidelity (or, more precisely, the fidelity
squared) for the junction, andFres;uc01stmindu2 is the squared
fidelity for the resonator[29]. These quantities are different
because of leakage to other states; however, in the RWA
limit, they are both equal to unity.FJJmeasure the success of
deexciting the qubit, andFres measures the success of excit-

ing the resonator. In Fig. 5 we plotFJJ andFres as a function
of g. Typically, the junction fidelityFJJ remains close to
unity, with some oscillations, for all couplings. This behavior
is a consequence of the fact that there is always a time where
uc10u2 becomes small, as is evident in Figs. 3 and 4. However,
because of leakage to other states, the resonator fidelityFres
decreases significantly(again with oscillations due to the
“switching” of tmin with g) with increasing interaction
strength. The lower curve in Fig. 5 shows thatFresù90% is
possible withg=0.15De, which allows a state transfer in
under 5 ns.

V. DISCUSSION

We have developed a theoretical technique to analytically
calculate the leading-order perturbative corrections to the
RWA or Jaynes-Cummings Hamiltonian for a quantum two-
level system linearly coupled to a harmonic oscillator or
single-mode boson field, a model central to many current
quantum computing architectures. Such corrections are nec-
essary to treat the fast information-processing regime where
the interaction strength approaches the qubit level spacing.
The method was applied to a current-biased Josephson junc-
tion coupled to a piezoelectric nanoelectromechanical disk
resonator, and good agreement with exact numerical results
was obtained.
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